1,991 research outputs found

    Asymptotically AdS brane black holes

    Full text link
    We study the possibility of having a static, asymptotically AdS black hole localized on a braneworld with matter fields, within the framework of the Randall and Sundrum scenario. We attempt to look for such a brane black hole configuration by slicing a given bulk spacetime and taking Z_2 symmetry about the slices. We find that such configurations are possible, and as an explicit example, we provide a family of asymptotically AdS brane black hole solutions for which both the bulk and brane metrics are regular on and outside the black hole horizon and brane matter fields are realistic in the sense that the dominant energy condition is satisfied. We also find that our braneworld models exhibit signature change inside the black hole horizon.Comment: 21 pages, 6 figures, RevTex; v2: clarifications added, figures updated, eq.31 corrected, comment on small four dimensional cosmological constant limit added, character size increased, results unchanged. v3: reference added, version accepted in Phys. Rev. D (2006

    A New Class of Four-Dimensional N=1 Supergravity with Non-minimal Derivative Couplings

    Full text link
    In the N=1 four-dimensional new-minimal supergravity framework, we supersymmetrise the coupling of the scalar kinetic term to the Einstein tensor. This coupling, although introduces a non-minimal derivative interaction of curvature to matter, it does not introduce harmful higher-derivatives. For this construction, we employ off-shell chiral and real linear multiplets. Physical scalars are accommodated in the chiral multiplet whereas curvature resides in a linear one.Comment: 18 pages, version published at JHE

    Cost Sensitivity Analysis for Laser Powder Bed Fusion

    Get PDF
    Laser Powder Bed Fusion is the most widespread additive manufacturing process for metals. In literature, there are several analytical models for estimating the manufacturing cost. However, few papers present sensitivity analyses for evaluating the most relevant product and process parameters on the production cost. This paper presents a cost model elaborated from previous studies used in a sensitivity analysis. The most relevant process parameters observed in the sensitivity analysis are the 3D printer load factor, layer thickness, raw material price and laser speed

    Direct fabrication through electron beam melting technology of custom cranial implants designed in a phantom based haptic

    Get PDF
    Repairing critical human skull injuries requires the production and use of customized cranial implants and involves the integration of computer aided design and manufacturing (CAD and CAM). The main causes for large cranial defects are trauma, cranial tumors, infected craniotomy bone flaps and external neurosurgical decompression. The success of reconstructive cranial surgery depends upon: the preoperative evaluation of the defect, the design and manufacturing of the implant, and the skill of the operating surgeon. Cranial implant design is usually carried out manually using CAD although this process is very time-consuming and the quality of the end product depends wholly upon the skill of the operator. This paper presents an alternative automated method for the design of custom-made cranial plates in a PHANToM \uae-based haptic environment, and their direct fabrication in biocompatible metal using electron beam melting (EBM) technology

    LTV stochastic systems stabilization with large and variable input delay

    Get PDF
    In this paper we propose a solution to the state-feedback and output-feedback stabilization problem for linear time-varying stochastic systems affected by arbitrarily large and variable input delay. It is proved that under the proposed controller the underlying stochastic process is exponentially centered and mean square bounded. The solution is given through a set of delay differential equations with cardinality proportional to the delay bound. The predictor is based on the semigroup generated by the closed-loop system in absence of delay, and its computation is described by a numerically reliable and robust method. In the deterministic case this method generates the same optimal trajectories as in the delay-less case

    On the Onset of Inflation in Loop Quantum Cosmology

    Get PDF
    Using a Liouville measure, similar to the one proposed recently by Gibbons and Turok, we investigate the probability that single-field inflation with a polynomial potential can last long enough to solve the shortcomings of the standard hot big bang model, within the semiclassical regime of loop quantum cosmology. We conclude that, for such a class of inflationary models and for natural values of the loop quantum cosmology parameters, a successful inflationary scenario is highly improbable.Comment: 16 pages, 6 figures Amended version to appear in Phys. Rev.
    corecore